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Abstract: Exploration is crucial for enabling legged robots to learn agile locomo-
tion behaviors that can overcome diverse obstacles. However, such exploration is
inherently challenging, and we often rely on extensive reward engineering, expert
demonstrations, or curriculum learning—all of which limit generalizability. In
this work, we propose Skill Discovery As eXploration (SDAX), a novel learning
framework that significantly reduces human engineering effort. SDAX leverages
unsupervised skill discovery to autonomously acquire a diverse repertoire of skills
for overcoming obstacles. To dynamically regulate the level of exploration during
training, SDAX employs a bi-level optimization process that autonomously ad-
justs the degree of exploration. We demonstrate that SDAX enables quadrupedal
robots to acquire highly agile behaviors including crawling, climbing, leaping,
and executing complex maneuvers such as jumping off vertical walls. Finally, we
deploy the learned policy on real hardware, validating its successful transfer to the
real world.
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Figure 1: We deployed our policy on a real robot. The robot successfully leaps over the gap.

1 Introduction

In recent years, combining legged robot locomotion with deep reinforcement learning (deep RL)
has led to remarkable advances in agility [1, 2, 3, 4, 5, 6, 7, 8]. However, existing methods of-
ten depend on additional techniques to master challenging skills, including: (1) reward engineering
informed by domain expertise [9, 10, 11], (2) demonstration datasets [12, 13, 14, 15], and (3) care-
fully crafted curriculum learning [16]. In this work, we introduce Skill Discovery As eXploration
(SDAX), a framework capable of solving highly challenging tasks—such as the wall-jump shown in
Figure 9—by autonomously exploring a diverse set of strategies. SDAX leverages unsupervised re-
inforcement learning to achieve this, eliminating the need for manually designed curricula or demon-
stration data.
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Unsupervised RL offers a framework for learning diverse skills, where each skill corresponds to
a highly correlated sequence of behaviors and is represented by a vector z ∈ Rn. The intrinsic
reward in unsupervised RL encourages the policy to exhibit different behaviors when conditioned on
different skill vectors z, a process commonly referred to as unsupervised skill discovery. We harness
this learning process to explore a wide range of high-level action strategies, ultimately enabling the
emergence of agile behaviors necessary to solve challenging tasks.

In detail, SDAX combines two objectives: solving the given task and finding diverse solutions.
Solving the task is represented by maximizing the task reward. The task reward is kept simple,
such as following forward velocity commands to move toward task completion. On the other hand,
exploring diverse behaviors is achieved by maximizing a diversity reward, which is derived from
skill discovery methods. This encourages the agent to try various approaches to find the desired
height, orientation, velocity, or angular velocity needed to solve the task. However, balancing two
distinct objectives is not straightfoward and one may overpower the other. If the task reward dom-
inates, agents may not sufficiently explore diverse behaviors. Conversely, if the diversity reward
dominates, agents may spend too much time exploring, failing to solve the task. This is analogous
to the exploration-exploitation trade-off in RL [17]. To address this problem, we introduce a learn-
able parameter λ to balance the two objectives. We train λ to automatically adjust the weight of the
diversity reward to maximize the task reward.

In summary, SDAX aims to adopt skill discovery methods for high-level explorations to optimize the
task-specific reward. The primary contributions of this work are as follows: (1) We propose a novel
framework that combines RL and unsupervised skill discovery algorithms to automatically learn
agile locomotion skills. (2) We provide a thorough derivation of a bi-level optimization framework
for training the balancing parameter λ. We also demonstrate that SDAX of adapting λ robustly finds
the optimal value for a given task. (3) We evaluate SDAX against manual exploration strategies on
four challenging locomotion tasks: jumping, leaping, crawling, and a wall-jump.

2 Related Work

Unsupervised Skill Discovery. The goal of unsupervised skill discovery is to establish an associ-
ation between a latent skill vector z and the resulting skill-conditioned policy π(a|s, z). Two main
families of approaches have been proposed for achieving this goal. The first family maximizes the
mutual information between skills and states, I(z; s). Examples include DIAYN [18] and VIC [19].
The second family maximizes the Wasserstein Dependency Measure, IWDM , as seen in methods
such as LSD [20], METRA [21], and LGSD [22]. Since SDAX is agnostic to the choice of skill
discovery approach, we evaluate it using representative algorithms from both families: DIAYN and
METRA.

Learning Agile Locomotion. Recently, learning-based methods have demonstrated highly agile
locomotion capabilities such as high-speed running [23, 24], jumping [25, 26], and climbing [27,
28]. Our work aims to cover not only jumping, running, and leaping, but also wall-jumping, which
involves a parkour-style motion combining flipping and jumping using walls.

The work most related to ours is that of Zhuang et al. [9], which used a manually designed reward
that penalizes the overlap between the robot and imaginary obstacles. They trained agents to mini-
mize these overlaps, resulting in the learning of agile behaviors. In contrast, we aim to train a similar
set of tasks without the need for such reward designs. Instead, we allow an unsupervised RL method
to discover the skills required to solve these tasks.

Skill Discovery for Locomotion. Recently, several approaches have incorporated skill discovery
into locomotion training pipelines. Cheng et al. [29] used skill discovery methods to obtain diverse
skills for solving tasks. A core difference is that they assume access to a near-optimal policy and
value function from the start, and introduce skill discovery to diversify skills based on the given
policy. In contrast, SDAX uses skill discovery in-the-loop to obtain an optimal policy for solving
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Figure 2: A figure of bi-level optimization for πθ and λ. The task reward gives the gradient signal
for training λ, and the sum of both sources of rewards provides the gradient signal for optimizing
πθ.

the task. Atanassov et al. [30] proposed replacing the objective of LSD with a “norm-matching”
objective to obtain more diverse and controllable skills. Our aim is not to replace or outperform
existing skill discovery methods, but rather to leverage them as a high-level exploration strategy to
acquire agile behaviors.

3 Unsupervised Skill Discovery as Exploration

3.1 Problem Formulation

We regard the problem of training a control module for a legged robot as a Markov Decision Process
(MDP) defined asM ≡ {S,A,R,P, γ}, where S is a state space, A is an action space composed
of joint position targets for a PD controller of the robot, R is a reward function, P is a transition
probability, and γ is a discount factor. The objective of RL is to obtain an optimal policy π which
maximizes the expected sum of the discounted reward J = Eπ

[∑∞
t=0 γ

trt

]
. π can be parameterized

with the neural network θ, so here we denote policy as πθ. However, instead of training a standard
policy πθ(a|s), we train a skill-conditioned policy πθ(a|s, z), where z is randomly sampled from a
fixed prior distribution, z ∼ p(z), for each episode and remains fixed throughout the episode.

3.2 Algorithm

Our objective is to find the policy parameter θ that optimizes the expected sum of both the task
reward rtask and the diversity reward rdiv.

θ = argmax
θ

J task+div = argmax
θ

Eπθ

[ ∞∑
t=0

γt(rtask
t + λrdiv

t )
]

A learnable parameter λ determines the weight of rdiv, and we refer to it as the balancing parameter.
The task reward rtask

t specifies the goal of the task. It can be defined for each task and should be
kept simple, such as a forward velocity tracking reward. Regardless of the value of λ, the policy
π is always conditioned on a particular z. Conditioning the policy on different values of z results
in different behaviors, so training a skill-conditioned policy with λ = 0 effectively means we are
training a group of different policies, all of which converge into a single behavior. When λ becomes
large, the diversity reward dominates, and each policy learns a distinct skill, but none of them are
capable of solving the task. Thus, determining the appropriate value of λ is crucial. In the following
paragraphs, we will explain how the balancing parameter λ is trained and how rdiv is defined.

Train Balancing Parameter As depicted in the Figure 2, we utilize a bi-level optimization frame-
work to train both policy π and a learnable balancing parameter λ, which is similar to LIRPG [31].
While θ is trained to maximize J task+div, λ is trained to maximize only J task = Eπθ

[∑∞
t=0 γ

trtask
t

]
.

It is worth noting that our ultimate goal is to solve the given task. So, the intuitive meaning of train-
ing λ solely depending on the task reward is that we determine the degree of diversity reward only
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to maximize the task performance. Ideally, when the diversity reward helps solve the task, λ will be
increased, and if it rather deters training, λ will be decreased.

More concretely,
λ = argmax

λ
J task. (1)

The challenge here is that we cannot directly compute the gradient of J task with respect to λ. To
address this, we apply the chain rule to decompose the gradient as follows:

∇λJ task = ∇θJ task∇λθ. (2)

To make this expression tractable, it can be further expanded into the following final form:

∇λJ task ≈ αAtask∇θ′ log πθ′(a|s, z) ·Adiv∇θ log πθ(a|s, z). (3)

Here, α is the learning rate, θ′ denotes the parameter θ after a single update, and Atask and Adiv

denote the advantage values computed using rtask and rdiv, respectively. The detailed derivation of
Equation (3) is provided in Appendix A. Now we can directly compute this term using a sample-
based approximation.

The intuitive meaning of this formula is that if the gradient vectors from the task reward and the
diversity reward point in a similar direction, λ should be increased; otherwise, it should be decreased.
The key difference between SDAX and Zheng et al. [31] is that instead of training the intrinsic
reward function itself, we fix the intrinsic reward as the diversity reward, and we only train the
balancing parameter λ to determine the degree of it.

Diversity Reward For the diversity reward rdiv, we follow the formulation of METRA [21]. They
train skills to maximize the Wasserstein Dependency Measure [32] IWDM = IW (S;Z). Maximiza-
tion of IWDM can be translated into the following objective:

sup
π,ϕ

EP (τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))T z

]
s.t. ∥ϕ(s)− ϕ(s′)∥2 ≤ 1,∀(s, s′) ∈ Sadj,

Here, ϕ : S → Z is a learnable representation function that maps the state into a latent skill space.
Optimization of this term can be achieved by simply using an off-the-shelf RL algorithm to maxi-
mize the reward rdiv = (ϕ(st+1) − ϕ(st))T z. To ensure that ϕ satisfies the constraint, we use dual
gradient descent with a Lagrange multiplier κ with a small margin ϵ > 0. Please refer to Park et al.
[21] for more details.

Skill Selection A typical unsupervised skill discovery method requires careful selection of the
optimal skill vector z during the testing phase. However, we observed that as training progresses,
an increasing proportion of the learned skills exhibit successful behaviors, a phenomenon we refer
to as “positive collapse”(Section 4.3). Therefore, in this work, we simply select a random skill z for
reporting performance, rather than selectively choosing it or training a high-level controller.

Implementation Details We introduced two separate value networks, vtask
ψ1

and vdiv
ψ2

, due to the
presence of two distinct reward sources: rtask and rdiv. Using a single value network to model the
value of rtask + λrdiv led to unstable training, as the scale of the rewards varied with changes in λ.
Pseudo-code for our algorithm is provided in the appendix D.1.

4 Experimental Results

In this section, we evaluate the proposed framework by training policies on a set of agile locomotion
tasks. First, we examine three robot parkour learning tasks from Zhuang et al. [9], including leaping,
climbing, and crawling, which require distinctive control strategies to overcome obstacles. On these
tasks, we experiment with how skill discovery methods can aid in learning agile behaviors and
evaluate SDAX against baselines.
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(a) Leap (b) Climb (c) Crawl

Figure 3: Training curves, which denote the number of objects passed over the number of updates.
Our method with METRA can solve all the tasks and exhibits better sample efficiency.

We use Isaac Gym [33] as the simulation engine, and our codebase builds on the work of Rudin
et al. [34]. All experiments are conducted using the Unitree A1 robot. The gap for the leap task is
48cm, the platform height for the climb task is 25cm, and the gap height for the crawl task is 29cm.
We adopt Proximal Policy Optimization (PPO) [35] as our main reinforcement learning algorithm,
and details of the observation space are provided in Appendix D.3. Depending on the task, policies
typically converge within 10k–20k iterations, requiring approximately 8–16 hours of training on an
NVIDIA A40 GPU.

4.1 Learning Agile Locomotion Skills

We compared SDAX against the following baseline algorithms:

• Task-only: An RL baseline trained only with task specific rewards rtask.

• Div-only: An RL baseline trained using diversity reward rdiv only.

• RND: It combines rtask with an exploration reward instead of a diversity reward.

• SDAX with DIAYN: rdiv is computed with DIAYN reward.

• SDAX with METRA: rdiv is computed with METRA reward.

We designed the same task reward across all baseline methods and tasks, with the primary goal of
incentivizing agents to move forward. Details of the task rewards are provided in Appendix D.2.
Since SDAX can be regarded as an exploration mechanism, we included RND [36], one of the most
widely adopted exploration algorithms, as a baseline. For both the diversity reward and exploration
bonus in RND, we manually specify sub-dimensions of the state space, ensuring that the learning
process focuses on exploration within the specified sub-dimensions. Specifically, we selected base
heights for climbing and crawling tasks and forward velocity for leaping. Additionally, to expedite
the learning of the Div-only agent, we provided the robot’s base x position as an additional input
to the skill discovery algorithm. This facilitated the exploration of diverse x positions, ultimately
helping the agent move forward.

SDAX enables learning the skills needed to solve each task. We present the training curves of
SDAX and all baseline algorithms in Figure 3 over five different seeds. We measured the num-
ber of obstacles passed in each task, where each task contains three consecutive obstacles of the
same configuration. SDAX successfully learned the necessary motor skills for all tasks. Compared
to the Task-only baseline, we observed that incorporating diversity rewards helps in learning agile
locomotion skills. However, relying solely on diversity rewards (Div-only) fails to achieve mean-
ingful skills, highlighting that a balanced interplay between task and diversity rewards is critical
for success. Additionally, a comparison with RND shows that diversity-based approaches outper-
form exploration-based rewards. We believe this is because naive exploration-based methods focus
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(a) Leap - success (b) Climb - success (c) Crawl - success

(d) Leap - failure (e) Climb - failure (f) Crawl - failure

Figure 4: Visualization of the diverse skills explored by the robot during training.

(a) Training curve (b) Corresponding curve of λ

Figure 5: SDAX outperforms all the baseline rewards with fixed value of lambda.

on state-level exploration, incentivizing agents to visit nearby unvisited states, making skill-level
exploration challenging. In contrast, skill discovery methods inherently facilitate skill-level explo-
ration, as they encourage skills to explore distinct sets of states, allowing agents to transition to
entirely new regions. Lastly, it is worth noting that METRA outperforms DIAYN as a skill dis-
covery module. This is because the diversity reward rdiv from DIAYN can be maximized even with
small differences between states, as long as the discriminator network can distinguish them, whereas
METRA seeks diversity without saturation.

Skill discovery enables high level exploration. We also provide qualitative evidence demonstrat-
ing how skill discovery methods enhance exploration. Figure 4 illustrates example behaviors of
SDAX using two different skills for each task based on an actual model checkpoint from training.
To observe the behaviors of different skills, we kept the model fixed and fed different skill vectors
to the policy. As a result, both successful and unsuccessful episodes were generated from the same
policy, using different skill vectors. In the leaping task, some skills enabled the agent to powerfully
kick off the ground, gaining enough height to clear the gap, while others resulted in weak jumps
that led to failure. In the crawling task, certain skills lowered the robot’s body posture to pass under
the obstacle effectively, whereas others caused the robot to jump and lose balance. These examples
illustrate that the agent explores a diverse range of heights—some of which solve the task while
others do not. When a particular skill starts solving the task, the task reward increases, leading
to successful task completion. In this sense, skill discovery functions as a high-level exploration
module.

4.2 Learning Balancing Parameter λ

Selecting the appropriate value for λ is crucial, as the scale of both the task reward and diversity
reward is difficult to determine a priori. If either the task reward or the diversity reward dominates,
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Leap Climb Crawl
3k 5k 10k 7k 10k 20k 5k 10k 15k

43.1±4.3 90.6±2.6 97.1±2.3 31.0±3.1 58.1±5.3 65.1±4.2 20.1±4.1 54.7±4.7 59.9±5.8

Table 1: Ratio of successful skill vectors z for each checkpoint (%). We randomly sampled 100
skills to measure success rate, and repeated ten times to determine the standard deviation.

the agent’s learning process can be significantly hindered. In this section, we demonstrate how our
algorithm effectively adjusts λ during training. We compare our adaptive approach to fixed values of
λ, using four different settings: 0.01, 0.1, 1, 10. These experiments were conducted on the leaping
tasks from the previous section, with each method trained using three different random seeds. We
measured performance based on the number of obstacles passed.

Our method outperforms fixed λ values. Figure 5(a) shows that our adaptive method outper-
forms all fixed-value experiments. SDAX demonstrated both superior sample efficiency and final
performance compared to rest of the λ values. Figure 5(b) illustrates how the learned λ values
evolve during training. The value starts at 10.0 and gradually decreases, suggesting that our algo-
rithm learned that decreasing λ helps maximize task rewards over time.

It is also important to note that our method does not correspond to a single fixed λ value throughout
training. In other words, there may not exist a single value of λ that could yield an identical training
curve. SDAX adjusts λ dynamically, resulting in different values at different stages of training,
which allows the agent to achieve an appropriate balance of diversity and task reward throughout
the learning process.

4.3 Positive Collapse: Convergence of Skills into a Solution Space

One potential challenge of incorporating a skill discovery module into the learning process is the
difficulty of selecting the exact skill that solves the task after training, especially if only a small
portion of the skill space is effective. However, we observed that as training progresses, a growing
number of skill vectors z ∼ N (0, I) become capable of solving the task. To demonstrate this, we
selected model checkpoints at various stages of training and measured the success rate out of random
skill vectors. The results are presented in Table 1. For the leap task, initially, around 43% of the
skills were successful, but this number eventually approached nearly 97%. Similarly, for the climb
and crawl tasks, the proportion of successful skills increased steadily. This helps evaluation of the
policy with right z, as presented in appendix B.

This suggests that once a viable solution is discovered, different skill vectors converge into similar
behaviors with the solution. This contrasts with a typical skill discovery scenario where only a small
subset of skills solves the task. We observe that this phenomenon of later convergence is facilitated
by task rewards: when a skill finds a successful solution, the corresponding trajectory receives higher
rewards, which results in the increased probability of the corresponding actions taken. Because all
skills share the same policy network, this learning propagates to other skill-conditioned behaviors,
leading to what we term a “positive collapse” of skills. This is beneficial because it mitigates the
issue of selecting the right skill.

4.4 Wall-jump : Learning Super Agile Tasks

Lastly, we pushed our method to its limits by introducing a new task named wall-jump. It requires
the robot to perform a sequence of highly agile motions, including running, jumping, flipping, and
landing in a specific order. To make this feasible, we devised a guideline-based reward that is widely
adopted in robotics[37, 38]. The reward encourages the agent to follow the guideline specified by a
user. We used this reward as rtask. More details about the reward design can be found in Appendix
E.1. The exact guideline is shown in Figure 9(a) in Appendix. Note that the guideline only provides
the target trajectory for the root position while not offering any information about orientation.
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Figure 7: Both the climbing (top) and crawling (bottom) policies’ skills were tested on the real robot.

However, providing the guideline alone was not sufficient for the agent to successfully perform the
wall-jump. Figure 9(b) shows the resulting behavior of the agent trained solely with rtask. The robot
was able to follow the guideline up until it reached the perpendicular wall, but then crashed its back
against the wall. The cumulative reward for this episode was about 5.0, as shown by the blue curve
in Figure 9(e). We observe that the robot needs to acquire a specific orientation to kick off the wall
and land safely.

Figure 6: Wall-jump.

Therefore, we provided the robot’s base’s roll, pitch, and yaw
as input to the skill discovery algorithm, allowing our method to
explore and learn diverse orientations of the robot when needed.
Figures 9(c) and (d) show the resulting behavior. Our method was
able to acquire the specific orientation needed to kick off the wall.
As a result, SDAX achieved a successful wall-jump (Figure 6) with
a much higher task return of 9.5 as indicated by the green curve in
Figure 9(e).

4.5 Hardware Experiments

After successfully training a policy that solves the task in simulation, we fine-tune it for real-world
deployment by introducing observation noise and domain randomization [39]. Specifically, we con-
tinue training for an additional 5,000 steps with these modifications to improve robustness. Full
details of the noise and randomization parameters are provided in Appendix D.4 and Appendix D.5.
To evaluate whether the discovered skills transfer to the real world, we deploy the policy on a Uni-
tree A1 robot. As shown in Figure 1 and Figure 7, the robot successfully performs agile maneuvers
such as leaping over a 46 cm gap, climbing a 25 cm platform, and crawling under a 27 cm-high
obstacle. Furthermore, as illustrated in Figure 8 in Appendix, the crawling policy remains robust
even under varying terrain conditions. Please refer to the supplemental video for more details.

5 Conclusion

In this work, we introduced a novel learning framework that integrates unsupervised skill discovery
with reinforcement learning to enable legged robots to acquire highly agile locomotion behaviors
without relying on demonstration data or curriculum design. By balancing skill-level exploration and
task rewards through a bi-level optimization process, our method allows robots to discover diverse
behaviors such as crawling, climbing, leaping, and executing agile maneuvers like wall-jumping.
We further demonstrate that the policy learned through our framework can be successfully deployed
on real-world hardware.
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6 Limitations

While our work proposes a novel training framework, it comes with certain limitations. First, effec-
tive training requires manual specification of sub-dimensions of the state space to guide exploration.
For instance, to induce crawling behavior, we assume that exploring different body heights is essen-
tial, and therefore explicitly use height as an input to the diversity objective.

Another empirical observation is that it was better to add observation noise after learning a success-
ful policy using our main algorithm. We observed that applying excessive observation noise during
skill discovery makes training unstable. This is because the diversity reward relies on distinguishing
newly visited states, and noise can obscure meaningful differences, confusing the reward signal. To
address this, we first train the skill discovery module under low-noise conditions, and once effective
skills are acquired, we fine-tune the policy in a second phase with higher observation noise. We be-
lieve that improving the robustness of the skill discovery module—particularly its ability to operate
under noisy observations or heavy domain randomization—would further enhance the applicability
and reliability of SDAX.
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A Proof of Equation 3

We begin with the Equation (1), which is the decomposition of∇λJ task using the chain rule,

∇λJ task = ∇θ′J task∇λθ′.

Here, we can compute the first term∇θ′J task using the policy gradient theorem [40]

∇θ′J task ≈ Atask∇θ′ log πθ′(a|s, z) (4)

To compute the second term∇λθ′, we first derive θ′

θ′ = θ + α∇θJ task+div(θ)

= θ + αAtask+div∇θ log πθ(a|s, z) (5)

Here, α ∈ R is a learning rate. Then we can plug in this result to compute∇λθ′:

∇λθ′ = ∇λ(θ + αAtask+div∇θ log πθ(a|s, z))
= ∇λ(αAtask+div∇θ log πθ(a|s, z))
= ∇λ(αAtask + αλAdiv)∇θ log πθ(a|s, z)
= αAdiv∇θ log πθ(a|s, z) (6)

Finally, we can compute the value of∇λJ task by plugging in the Eq. (4) and Eq. (6):

∇λJ task ≈ Atask∇θ′ log πθ′(a|s, z) ∗ αAdiv∇θ log πθ(a|s, z) (7)

This concludes the derivation of the equation 3.

B Evaluation results after training

Table 2: Number of obstacles passed (our of three)

Methods Leap Crawl Climb

Task Only 0.00 ± 0.0 1.00 ± 1.4 0.00 ± 0.0
Robot Parkour Learning 2.23 ± 0.8 2.12 ± 1.3 2.82 ± 0.4
SDAX (random z) 2.34 ± 1.1 1.84 ± 1.5 1.72 ± 1.5
SDAX (fixed z) 2.85 ± 0.5 3.00 ± 0.0 2.93 ± 0.3

Thanks to positive collapse, increasingly larger portions of z can solve the task as training pro-
gresses. This allows us to reliably find a working z by randomly sampling, for example, 100 vec-
tors, evaluating their outcomes, and selecting the best-performing one. In Table 2, we present the
evaluation results after training is completed.

For “SDAX (fixed z)”, we first selected the best-performing z from 100 randomly sampled vectors,
then re-evaluated this z. For “SDAX (random z),” we sampled z at the beginning of each episode.
We also included Robot Parkour Learning (RPL) [9] as a baseline. For RPL, we kept the total
number of updates the same as in our method, with the first 70% of training on soft dynamics and
the remaining 30% fine-tuning on hard dynamics. The table reports the average number of obstacles
passed over 100 episodes after training is completed.

C Crawl on Diverse Terrain

To evaluate the robustness of the crawling policy trained with our skill discovery approach, we
deployed it on two different terrains: wood and a rubber mat. As shown in Figure 8, the robot suc-
cessfully crawled under the obstacle in both settings, demonstrating its ability to generalize across
varying surface conditions.
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Figure 8: The crawling policy demonstrates robustness by successfully navigating under obstacles
on different terrains: wood (top) and rubber mat (bottom).

D Implementation Detail

D.1 Algorithm

Algorithm 1
1: Initialize skill-conditioned policy πθ(a|s, z), value functions vtask

ψ1
and vdiv

ψ2
, representation func-

tion ϕ(s), Lagrange multiplier κ, Balancing parameter λ, data buffer D
2: for i← 1 to # of epochs do
3: for j ← 1 to # of episodes per epoch do
4: Sample skill z ∼ N (0, I)
5: while episode not terminates do
6: Sample action a ∼ π(a|s, z)
7: Execute a and receive s′ and rtask

8: Compute rdiv = (ϕ(s′)− ϕ(s))T z
9: Add {s, a, rtask, rdiv, s′} to data buffer D

10: end while
11: end for
12: for {s, a, rtask, rdiv, s′} in D do
13: Update ϕ(s) to maximize E(s,z,s′)∼D

[
(ϕ(s′)− ϕ(s))T z + κ ·min(ϵ, 1− ∥ϕ(s)− ϕ(s′)∥22)

]
14: Update κ to minimize E(s,z,s′)∼D

[
κ ·min(ϵ, 1− ∥ϕ(s)− ϕ(s′)∥22)

]
15: Update θ using PPO with reward r = rtask + λ ∗ rdiv

16: Update ψ1 and ψ2 using rtask and rdiv respectively
17: Update λ using Eq. 3
18: end for
19: end for

D.2 Task reward detail

The first three terms about tracking commands specify the goal of the task, while the other three
terms regularize unrealistic, infeasible motions.
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Table 3: Task rewards

Name Mathematical Expression Coefficients value

Tracking angular velocity e−|wyaw| 0.05
Tracking linear velocity |vx − vtargetx | -1
Alive - 2
Torque squared

∑
j∈joints

|τj q̇j |2 -1e-6

Exceed dof pos limits
∑

j∈joints
max(|dofj | − doflim, 0) -0.1

Exceed torque limits
∑

j∈joints
max(|τj | − τlim, 0) -0.2

D.3 Observation space

Table 4: A1 Robot Observations

Name Description Dimension

Base position x,y,z position of the robot’s base 3
Base rotation Yaw, Pitch, Roll of robot’s base 3
Base velocity Velocity of robot’s base in x,y,z direction 3
Base ang vel Angular velocity of robot’s base 3
Gravity projection Vector indicates direction of the gravity 3
Velocity command Velocity command given by users 3
DOF position Current angle of each DOF 12
DOF velocity Angular velocity of each DOF 12
Previous action Action executed in previous step 12
Distance to obstacle Distance to obstacle 1
Obstacle properties Difficulty and length of the obstacle 2
Obstacle info One hot encoding to identify the obstacle type 5
Sidewall distance Distance to side wall 2
Sampled skill Sampled skill for current episode 1

Sum 65

In the hardware experiments, we used a motion capture system to obtain global measurements such
as the robot’s base position and velocity. We also experimented with including certain robot con-
figuration parameters—such as mass and motor strength—as part of the observation. Since these
parameters are used in domain randomization, providing them could help the policy to be aware of
the current configuration. However, given that training was successful both with and without these
configuration inputs in both simulation and real-world settings, we conclude that this information is
not critical for policy performance.

D.4 Observation noise

Table 5: Observation noise coefficients per task

Obs Crawl Leap Jump

Base position ±0.1 ±0.1 ±0.1
Base rotation ±0.1 ±0.1 ±0.1
Base lin vel ±0.1 ±0.1 ±0.1
Base ang vel ±0.2 ±0.2 ±0.2
DOF position ±0.01 ±0.01 ±0.01
DOF velocity ±1.5 ±1.5 ±1.5
Gravity projection ±0.05 ±0.05 ±0.05
Distance to obstacle ±0.0 ±0.05 ±0.05
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D.5 Domain randomization parameters

Table 6: Domain Randomization Parameters

Parameter Range Form

Mass [-1.0, 3.0] Additive
Friction [0.0, 2.0] Multiplicative
Motor strength [0.9, 1.1] Multiplicative
Init base x position [0.2, 0.6] Additive
Init base y position [-0.25, 0.25] Additive
Init DOF position range [0.5, 1.5] Multiplicative

Domain randomization parameters were sampled from a uniform distribution with the range above.

D.6 Hyperparameters

Table 7: Hyperparameters of our method

Name Value

Learning rate 0.0005
Optimizer Adam[41]
PPO clip threshold 0.2
PPO number of epochs 5
GAE λ [42] 0.95
Discount factor γ 0.99
Horizon length 24
Entropy coefficient 0.001
Policy network π MLP with [512, 256, 128],
Activation of π ELU[43]
Value network v MLP with [512, 256, 128]
Activation of v ELU[43]
Representation function ϕ from METRA MLP with [256, 256, 256]
Activation of ϕ ReLU
Initial Lagrange coefficient κ from METRA 30
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E Details of the Wall-jump experiments

(a) Red dots - Human drawn guidelines (b) Task-only makes robots crash

(c) Ours- A robot runs and front-flips to kick wall (d) Ours- using wall, performs back-flip and lands

(e) Training curves (f) λ curve

Figure 9: Our method enables robots to solve the wall-jump task.

E.1 Details of the guideline following reward

For the wall-jump task, we defined a special task reward, rtask, based on a guideline provided by a
human. The guideline consists of a sequence of n points:

gi=0,1,...,n−1 ∈ R3

Let the robot’s base position in global 3D space be denoted as x ∈ R3. At each time step, the robot
has a target point gi, starting with g0. When the robot reaches the current target, it moves on to the
next target, gi+1. A target is considered reached when the distance between x and gi falls below a
threshold h ∈ R, i.e., ||x− gi||2 < h.

Then, the reward can be defined as follows:

rt = e−||x−gi||2

This term has the desirable property of being bounded between 0 and 1. It approaches 0 when the
robot is infinitely far from the current target and becomes 1 when the robot exactly reaches the target.
This property contributes to stability during the learning process. We optimized this reward using
reinforcement learning (RL) to train the agent to follow the given guideline.
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